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SUMMARY 

A residual method of finite differencing the governing differential equation for the elliptic transport problem is 
presented. The new finite differencing technique is applied to (1) the one-dimensional transport problem and 

' (2) the cavity flow problem for numerical illustrations. The results indicate the validity of the residual method 
of finite differencing. The usual method of term-by-term finite differencing, and considerations such as central 
differencing, hybrid differencing and upwind differencing are not needed in the present residual method. 
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INTRODUCTION 

There are two well-known methods of deriving finite difference equations from differential ones: by 
way of Taylor-series expansion and by integration over finite areas, together with assumptions 
about the distribution of the variables between the nodes of the grid. In the present work another 
type of finite differencing scheme, known as the residual scheme, is presented to solve the elliptic 
transport problem. Various schemes such as the central (CDS), upwind (UDS), hybrid (HDS), skew 
or quadratic upwind differencing have been developed and investigated for such 
problems. The finite difference equation obtained by the residual approach has been compared 
with those obtained by CDS, UDS and HDS for the one-dimensional problem. As a numerical 
illustration for the two-dimensional elliptic problem, the classical problem of flow in a square 
cavity has been chosen. The results are compared with those of Burggraf4 who has given extensive 
finite difference results for low and moderate Reynolds numbers. In this context it may be worth- 
while to mention that in an earlier work the authors5 applied the residual approach to solve the 
parabolic transport problem and found encouraging results. 

It should be mentioned that the residual method proposed independently by the authors 
appears similar to the finite analytic method by Chen and Chen.6 However, there are conceptual 
and procedural differences between the two methods which make the residual method more 
versatile. Specifically, the present method provides algebraic expressions which correspond to the 
differential expressions in the governing equations both in sign and magnitude. Thus, the residual 
method allows the physical interpretation and logical extension of the finite difference expression 
for simple cases to complicated cases without recourse to the residual method of formulation in 
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each case. Also, the residual method can be applied separately to various groups formed out of the 
complete governing differential equation, and then the residual expressions may be added up to 
obtain the formulation for the complete governing equation. This is a simple but approximate 
procedure. The two-dimensional formulation (15) in the present text has been carried out in this 
manner, and a logical extension of the present one-dimensional formulation (7) including 
effectively the variation of the coefficients in the governing equation (1) is reported elsewhere.' 

FORMULATION 

One-D problem 

The starting point of the residual method of finite differencing is that an incorrect set of trial 
values of the unknowns at the various grid nodes satisfy the governing differential equation with an 
additional residue. The differential equation with the additional residue is then solved in the cell in 
such a manner as to match the trial values at the nodes in the cell. This procedure provides an 
algebraic equation for the residue which is equated to zero to obtain the finite difference equation. 

The differential equation for the one-dimensional elliptic problem involving transport of a 
quantity 4 by convection, diffusion and source term in a small cell may be written as 

pud4ldx - Td24/dX2 - S# = 0 (1) 
It is assumed that the local velocity u, the density p ,  the diffusivity r and the source term s+ are 
constant in the small cell. The nodes E, P and W lie along the x-direction in Figure 1. 

For incorrect trial values &, dP and 4bw, one may write a residual equation as 

pud4ldx - Td2$/dX2 - sg = R (2) 
where R stands for a residue in the cell. A solution of equation (2) is of the following form. 

with 
(3) 

(4) 
The values &, &. and Cbw at x = Ax, 0, - Ax are used in equation (3) to determine the unknown 

NW N NE 

Figure 1. Elliptic cell 
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coefficients C,, C, and C,. The expression for R is then derived as 

where 
= Pu(#E - #W)/(2Ax) - rf(Px)(#E + 4 W  - 2#P)/Ax2 - srp (5 )  

(6) 

(7) 

P, = puAx/r, f ( P )  = P/2(ep - e-')/(e' + e-' - 2) 

Pu(#E - #W)/(2Ax) - rf(Px)(#E + #)W - 2#P)/Ax2 - srp = 

The finite difference equation is now obtained by equating R to zero as follows: 

In equation (6), P, stands for the local grid Peclet number and the factor f depends solely on this 
number. 

Unlike conventional methods of finite differencing the differential equation term by term, the 
residual approach provides an F.D.E. for the whole differential equation. The final F.D.E. (7) can, 
however, be identified term by term with the governing differential equation in the present case. In 
this case, the convection term and the diffusion term are both in CDS form. However, the diffusion 
term has a factor f which depends on the grid Peclet number. This makes the present F.D.E. 
substantially different from conventional schemes. As the results in the illustration will show, the 
F.D.E. (7) provides both stability and accuracy of numerical solution. 

Two-D problem 

be written as 
The governing equation for the two-dimensional elliptic transport problem for a small cell may 

pua4/ax + pua#/ay - r a 2 4 / a X 2  - ra2#)/ay2 - srp = 0 (8) 
where velocities, physical properties and source are taken as constants in the small cell. The elliptic 
cell is shown in Figure 1 .  

Following the formulation for the one-dimensional case, the residual equation may be written as 

puaqblax + pua$/ay - r a 2 4 / a X 2  - raz#/ayZ - srp = R (9) 
One now requires a local solution to equation (9). With nine trial values of # at the nodes of the cell, 
nine independent simple relations with unknown coefficients could be made. Solving these 
equations, one can obtain a rigorous finite difference equation for the problem. It is possible in 
principle, but difficult in practice. Moreover, extension to three dimensions may be extremely 
difficult. 

For this reason, a simpler method, based on group-wise formulation is used to derive F.D.E. for 
two dimensional cases as follows, 

Equation (9) is arranged by grouping terms as given below 

R = EW(Rex + Re,) + (1 - W)(Rpx + R p y ) l -  S+ 

R,, = pua4/ax - r a z # / a X z ;  R,, = pva+/ay - ra24/ay2 

R,, = pua#/ax - ra2#/ay2; R,, = pva#/ay - r a 2 # / a X Z  

(10) 

(1 1% b) 

Wa ,  b) 

where Re, and Re, are elliptic combinations in the x and y directions, respectively, 

and Rpx, R,, are parabolic combinations in the x and y directions, respectively, 

and Wis a weight coefficient whose value may be chosen between 0 and 1 to emphasize parabolic or 
elliptic natures. The total residue R is thus broken up into residues Re,, Re,, R,, and R,, which are 
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simple to evaluate separately. In fact, the finite difference form for elliptic equation (1 la) follows 
directly from equation (5). Similar expression for Re, can be written. 

The detail of the finite difference formulation for the parabolic equation (12a, b) is reported 
el~ewhere.~ The finite difference cell for equation (12a) will be either the left half or the right half of 
the full elliptic cell in Figure 1. Similarly, the finite difference cell for equation (12b) will be either 
the top half or the bottom half of the full cell. It depends on the directions of the velocities. The 
results are presented below. 

> o R p x  = p u ( 4 P  - 4W)/AX - r/Ay2[ex(4NW - 2#W + 4 S W )  + (1 - e,)(dh - 2c6P + &)I 
< o R p x  = pU(& - 4P)/Ax - r/AY2[ex(4NE - 2 4 E  + 4 S E )  + - e x ) ( 6 N  - 2 4 P  + 4 S ) l  (13b) 

U = 0: R,, = - r/Ay2(& - 2 4 p  4- 4 s )  (134 

( 144 
where 

F ,  = rAx/(P14AY2) = (Ax/AY)2/1p,I 

Similar equations for Rp, can be written. 
Previous works consider only elliptic combinations namely Re, and Re, for the finite difference 

formulation of equation (8). In the present scheme both elliptic and parabolic combinations have 
been considered. Whether such consideration will provide an improved method requires numerical 
testing. The finite difference formulations for Re,, Rep, Rp, and Rpy have already been described. 
These can be used in equation (10) to obtain the total residue. When this residue is equated to zero 
one can obtain the finite difference equation as 

EW(Rex + R e p )  + (1 - W)(Rpx + R p y ) l -  ~4 = 0 (15) 

So far, the coefficients pu, pv, r in the differential equation (8) have been treated as constants in 
the cell. As the cell is usually small compared to the global region, this is approximately applicable 
even when these vary in the cell, provided one uses average values in the cell. Investigation on 
cavity flow shows that the present F.D.E. is applicable also in the case where 4 is u or v in 
equation (8). 

ILLUSTRATIONS 

One-D problem 

simple one-dimensional elliptic problem with variable velocity are presented below. 
The governing equation (16a, b), boundary condition (16c) and the exact solution (17) for a 

pud#/dx - rd24/dx2 = 0, 0.1 < x < 1 (16a) 

p = i ,  r = i ,  U = M / X  ( M > o )  (16b) 

+(0.1) = (O.l )M+I,  4(1) = 1 (16c) 

+(x) = x M + 1 ,  0.1 < x < 1 (17) 

The density p and diffusivity r a r e  chosen as unity for convenience. The velocity u is high upstream 
and it decreases downstream. In the above equations M is a parameter. The exact solution (17) 
depends strongly on this parameter. The equations have some bearing on the physical problem of 
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Table I. Values of Cp at x = 0.9 for equation (16) 

M 4 8 12 16 20 
Scheme* 0.4-4 0.8-8 1.2-12 1.6-16 2-20 

Exact 0.590 0387 0.254 0.1 67 0.109 
Present 0.587 0,383 0.249 0.161 0.104 
CDS 058 1 0.354 0185 0.053 -0.053 
UDS 064 1 0.498 0.407 0.345 0.299 
HDS 0.581 0.354 0185 0.053 0.000 

*Entries indicate range of grid Peclet numbers 

the one-dimensional distribution of 4 in a fluid flowing through a porous channel with controlled 
suction. 

A numerical solution of the problem considering nine uniform divisions has been carried out 
according to CDS, UDS, HDS and the present F.D.E. (7). An average local velocity in a cell given 
by 

24," = (uw + 2up + U E ) / 4  (18) 
is used in all the cases for finite differencing so as to compare these schemes on the same basis. The 
numerical results for 4 at x = 0.9 are presented in Table I along with the exact values. All the results 
are rounded up to three decimal places. The grid Peclet numbers for a particular M vary between 
MjlO and M .  These ranges are also shown in Table I. Large values of M generally indicate large 
values of grid Peclet numbers in this problem. 

It is observed that the present scheme provides the most accurate results among the various 
schemes for both small and large grid Peclet numbers. Those using HDS are the next best. The 
tabulated results for CDS look as good as HDS but negative values of 4 at certain values of x are 
predicted wrongly by CDS for large grid Peclet numbers. The results using UDS are less accurate 
compared to other schemes for this problem. 
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presented here. The geometry of the problem and the co-ordinate system used are given in Figure 2. 
The boundary conditions have been indicated in the sketch. The equations governing the flow are 
as follows: 

aupx + aulay = o (19) 

(20) 

(21) 

puaulax + puaulay = - appx + p(a2U/aX2 + a2u/ay2) 

puav/ax + pvav/ay = - ap/ay + p(a2v/aX2 + a2v/ay2) 

The momentum equations (20) and (21) are finite differenced according to equation (15), as 
described earlier. The continuity equation (19) is used for pressure correction as described by 
Patankar and Spalding." 

In the present scheme of solution, a pressure in cell arrangement is considered as shown in 
Figure 3. Each small cell is treated for continuity and the velocity locations are across the faces of 
each such cell. The u-momentum, u-momentum and continuity cells are shown separately in 
Figures 4(a), (b) and (c). The coefficients of equations (20) and (21) are averaged in the cell for finite 
differencing and the expressions for average u and u required for this are written in the Figures as 
well. The physical properties p and p are constant in the present problem and no averaging is 
needed. 

The finite difference equations are solved as per the following schedule: 
Initial trial values of u, u and p are selected. 
The finite difference equations for u-momentum and v-momentum are solved for by 
successive substitution. 
The pressure field is corrected to satisfy continuity in each cell. It may be noted that 
corrections to pressure gradients rectify velocities across each face of the continuity cell and 
their relations are obtained from the F.D.E. for the momentum equations. No conditions for 
pressure correction are needed near the boundaries; rather the condition of no flow across 
the boundaries is automatically imposed for boundary cells. 
The velocities are then corrected to take into account the improved pressure field. 
Steps (ii) to (iv) are repeated until the residues are reduced to very small quantities. 

Figure 3. Grid arrangement 
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Figure 4. Momentum and continuity cells 
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1 

Figure 5. Central line u-velocity for different W 

Figure 6(a). Streamlines for Re = 100 (16 x 16 mesh) Figure 6(b). Streamlines for Re = 400 (25 x 25 mesh) 

Figure 6(c). Streamlines for Re = lo00 (41 x 41 mesh) 
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RESULTS 

Computations have been carried out for Reynolds numbers 100,400 and 1000. The effect of grid 
size has been investigated considering (16 x 16) and (25 x 25) meshes. Qualitatively the effect of 
grid size is insignificant. However, quantitatively the results differ. For example, the peak value of 
the vertical central line u-velocity near the bottom for Re = 400 differs by 22 per cent when the grid 
is changed from (16 x 16) to (25 x 25). 

The weight W, which has been introduced in the finite difference equation (10) to emphasize 
parabolic or elliptic combination, has also been investigated for Re = 400. The problem has been 
solved using W = 0,0-5 and 1. The values W = 0 and W = 1 indicate fully parabolic and fully 
elliptic combinations, respectively, and W = 0.5 indicates a parabolic-elliptic combination. No 
problem of stability or convergence has occurred in these cases. The u-velocity along the vertical 
central line for these three cases is plotted and compared with that of Burggraf4 in Figure 5. From 
Figure 5, it can be seen that the plot for W = 1 is closest to Burggrafs result. This is expected since 
the global problem is elliptic. On the basis of this, the rest of the calculations have been performed 
with W = 1. 

The streamline patterns for different Reynolds numbers are shown in Figures 6(a), (b) and (c). It 
can be seen that the primary vortex centre moves downwards with increased Reynolds number, 
A feature of two small secondary cells near right lower corner is observed in the present case for 
Re = 1000. A comparison of the present values of stream function at vortex centre with those of 
Burggraf is presented in Table 11. It may be remarked that for Re = 1000, Burggraf4 could not give 
any solution, but the present method yields a solution. Plots of vertical central line velocity for 
Re = 100,400 and 1000 are shown in Figure 7. It may be emphasized that the present illustrations 
are based on the approximation of a single average velocity in a cell for finite differencing, and the 
results are encouraging even with this gross approximation. 
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Table 11. Stream function at the centre of primary 
vortex for two dimensional cavity flow problem 

Re Mesh Present 

100 11 x 11 
16 x 16 
21 x 21 
41 x41 

400 16 x 16 
21 x 21 
25 x 25 
41 x 41 

1000 25 x 25 

0.08 15 
0.0961 

__ 
__ 

0.074 1 

0.088 1 
___ 

__ 

0.0682 

Burggraf 

0.0784 

0.0955 
0.1015 

0.0675 

0.1017 

no solution 

- 

__ 

- 

41 x 41 00791 no solution 
Figure 7. Central line u-velocity for different Re(W = 1) 
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